
Particle creation by a moving boundary with a Robin boundary condition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 11325

(http://iopscience.iop.org/0305-4470/39/36/013)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 11325–11333 doi:10.1088/0305-4470/39/36/013

Particle creation by a moving boundary with a Robin
boundary condition

B Mintz, C Farina, P A Maia Neto and R B Rodrigues

Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, CEP 21941-972,
Rio de Janeiro, Brazil

E-mail: mintz@if.ufrj.br, farina@if.ufrj.br, pamn@if.ufrj.br and robson@if.ufrj.br

Received 16 May 2006, in final form 20 July 2006
Published 18 August 2006
Online at stacks.iop.org/JPhysA/39/11325

Abstract
We consider a massless scalar field in 1+1 dimensions satisfying a Robin
boundary condition (BC) at a non-relativistic moving boundary. We derive
a Bogoliubov transformation between the input and output bosonic field
operators, which allows us to calculate the spectral distribution of created
particles. The cases of Dirichlet and Neumann BC may be obtained from our
result as limiting cases. These two limits yield the same spectrum, which
turns out to be an upper bound for the spectra derived for Robin BC. We show
that the particle emission effect can be considerably reduced (with respect to
the Dirichlet/Neumann case) by selecting a particular value for the oscillation
frequency of the boundary position.

PACS numbers: 11.10.−z, 12.20.−m

1. Introduction

Moving bodies experience fundamental energy damping [1, 2] and decoherence [3] mecha-
nisms due to the scattering of vacuum field fluctuations. The damping is accompanied by the
emission of particles (photons in the case of the electromagnetic field) [4, 5], thus conserving
the total energy of the body-plus-field system [6, 7]. This dynamical (or nonstationary)
Casimir effect has been analysed for a variety of three-dimensional geometries, including
parallel plane plates [8], cylindrical waveguides [9] and rectangular [10], cylindrical [11] and
spherical cavities [12]. It also depends on the details of the coupling between the field and the
body, which can usually be cast into the form of boundary conditions (BC) for the field.

Of particular theoretical relevance is the Robin BC, which continuously interpolates the
Dirichlet and Neumann ones. For a scalar field, it reads

∂φ

∂n
(t, x0) = 1

β
φ(t, x0), (1)
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Figure 1. Phase shift ϕ between the reflected and incident waves as a function of ω for Robin BC
at x = 0.

where x0 ∈ �, with � being the relevant boundary involved in the problem and ∂/∂n means
normal derivative with respect to the boundary �. Though Robin BC can be considered for
a massive scalar field in any dimensions, in this paper we shall be concerned with a massless
scalar field in 1+1 dimensions satisfying this kind of condition in a non-relativistic moving
boundary. Before attacking the problem of particle creation, a few comments about Robin BC
are in order.

According to equation (1), Dirichlet and Neumann BC can be obtained as the limiting
cases β → 0 and β → ∞, respectively. The positive parameter β represents a time scale (we
take c = 1) associated with the time delay (or phase shift) characteristic of reflection at the
Robin boundary. In fact, suppose an incident monochromatic wave propagating in the negative
direction of the OX axis with wavenumber k and frequency ω reaches a Robin BC at x = 0.
The solution for x > 0 is then given by the superposition of the incident wave with the reflected
one obtained after the Robin BC is imposed, namely, φ(t, x) = A e−i(kx+ωt)+B ei(kx−ωt), where
φ(t, 0) = β

∂φ

∂x
(t, 0). Hence, it is straightforward to obtain the reflection coefficient at the

boundary, B/A =: rR , which is given by (we are using c = 1 so that k = ω)

rR = − 1 + iβω

1 − iβω
=: eiϕ(ω), (2)

where ϕ(ω) is the phase shift between the reflected wave and the incident one shown in figure 1
as a function of ω.

Though the incident wave is totally reflected at the boundary, since |r| = 1, the existence
of this phase shift gives origin to a time delay, which is discussed below. For this reason,
Robin BC are also useful for phenomenological models which describe penetrable surfaces
[13]. In order to see explicitly that these conditions, for some particular situations, simulate
the plasma model for real metals, let us compute the reflection coefficient rP using the plasma
permittivity, ε(ω) = 1 − ω2

P

/
ω2, where ωP is the plasma frequency. In the limit ω � ωP , it

is not difficult to show that

rP = −e2iω/ωP + O
(

ω2

ω2
P

)
. (3)

On the other hand, for ω � 1/β, equation (2) allows us to write

rR = −e2iβω + O(β2ω2). (4)

Comparing the last two equations, we conclude that for frequencies much smaller than the
plasma frequency, ω � ωP , the metallic boundary may be simulated by Robin BC, with
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Figure 2. Elastic support at x = 0 giving rise to a Robin BC.

1/β playing the role of the plasma frequency. Equivalently, β plays the role of the plasma
wavelength λP , which is directly related to the penetration depth of the field into the metallic
boundary.

In order to acquire further insight into the physical meaning of Robin BC, we discuss
below a simple mechanical model where such conditions occur. Consider an infinite string
under tension T tied to a massless ring that can slide without friction through a vertical rod, as
indicated in figure 2. Suppose, also, that the ring is coupled to an ideal spring of elastic constant
κ such that when the ring is at the origin the spring is neither compressed nor stretched. Since
we are considering a massless ring, from Newton’s second law and assuming small inclinations
on the vibrating string (|∂y/∂x| � 1), we have

y(t, 0) = T

κ

∂y

∂x
(t, 0). (5)

The above relation is precisely the definition of Robin BC, with T/κ playing the role of the
parameter β. The fact that Robin BC simulates an elastic support at the boundary has been
pointed out in the literature [14, 15]. Though the reflection at a fixed boundary with Robin
BC is complete (|rR| = 1), there is a time delay caused by the bulk/boundary dynamics. This
may help in explaining qualitatively the existence of surface terms that appear in connection
with Robin BC in quantum field theory [16–19].

A very detailed calculation was made by Romeo and Saharian concerning the static
Casimir effect of a scalar field in 3+1 dimensions submitted to Robin BC at two parallel plates
[19]. It is worth mentioning that Robin BC may give rise to restoring Casimir forces between
the plates once parameters β at the plates are appropriately chosen.

In this paper, we shall consider a semi-infinite slab (extending from −∞ to x = δq(t))
following a prescribed non-relativistic motion, with the Robin boundary at δq(t). We have
recently computed the dynamical Casimir force on a slab, which contains dissipative as well
as dispersive components [15]. In this paper, we will analyse in detail the particle creation
effect and compute the corresponding spectral distribution.

2. Input-output Bogoliubov transformation

In the instantaneously co-moving frame, the massless scalar field satisfies

∂φ′

∂x ′

∣∣∣∣
bound

= 1

β
φ′

∣∣∣∣
bound

. (6)

Neglecting terms of the order of [δq̇(t)]2, we find, in the laboratory frame,[
∂

∂x
+ δq̇(t)

∂

∂t

]
φ(t, δq(t)) = 1

β
φ(t, δq(t)). (7)
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We assume that the final position coincides with the initial one, which is taken at x = 0.

Hence

lim
t→±∞ δq(t) = 0. (8)

Jointly with the non-relativistic approximation, this condition implies that δq(t) is much
smaller than the wavelengths λ of the created particles. In fact, we will show that the
frequencies of the particles are bounded by the mechanical frequencies ω0 : ω = 2π/λ � ω0.

Since ω0δq ∼ δq̇ � 1, we have δq(t) � λ.

Thus, we may analyse equation (7) by expanding up to first order in δq and its derivatives.
This amounts to calculate the effect of the motion as a small perturbation [2]:

φ(t, x) = φ0(t, x) + δφ(t, x), (9)

where the unperturbed field φ0 corresponds to a solution with a static boundary at x = 0. The
first-order field δφ then satisfies the following BC at x = 0:

∂δφ

∂x
(t, 0) − 1

β
δφ(t, 0) = δq(t)

[
1

β

∂φ0

∂x
(t, 0) − ∂2φ0

∂x2
(t, 0)

]
− δq̇(t)

∂φ0

∂t
(t, 0). (10)

It is convenient to use the Fourier representation

�(ω, x) =
∫

dt eiωtφ(t, x).

The unperturbed field satisfies the Robin BC at x = 0. Its normal mode expansion for x > 0
is given by

�0(ω, x) = N(ω)[sin(ωx) + ωβ cos(ωx)][(ω)a(ω) − (−ω)a(−ω)†], (11)

with

N(ω) =
√

4π

|ω|(1 + β2ω2)

and (x) denoting Heaviside step function. The bosonic operators a(ω) and a(ω)† satisfy the
commutation relation

[a(ω), a(ω′)†] = 2πδ(ω − ω′). (12)

To solve equation (10) for δ�(ω, x) in terms of �0(ω, 0) (with x > 0), we use suitably
defined Green functions, obeying the differential equation(

∂2

∂x2
+ ω2

)
G(ω, x, x ′) = δ(x − x ′). (13)

From Green’s theorem, we find

δ�(ω, x ′) = −δ�(ω, 0)
∂

∂x
G(ω, 0, x ′) + G(ω, 0, x ′)

∂

∂x
δ�(ω, 0). (14)

This result is more easily combined with equation (10) if we select a solution GR(ω, x, x ′)
of equation (13) satisfying the Robin BC at x = 0. With this Robin Green function, we
immediately obtain the first-order field from equation (14) in terms of the BC satisfied by
δ�(ω, x) as given by the Fourier transform of equation (10). Then, the complete field is
written as

�(ω, x) = �0(ω, x) + GR(ω, 0, x)

[
∂

∂x
δ�(ω, 0) − δ�(ω, 0)

β

]
, (15)
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with
∂

∂x
δ�(ω, 0) − δ�(ω, 0)

β
= 1

β

∫
dω′

2π

[
∂�0

∂x
(ω, 0) + ωω′�0(ω, 0)

]
δQ(ω − ω′), (16)

where δQ(ω) is the Fourier transform of δq(t).

If we replace GR in equation (15) by the retarded Robin Green function, given by

Gret
R (ω, 0, x) = β

1 − iβω
eiωx, (17)

then the zeroth-order field �0(ω, x) corresponds to the input field �in(ω, x), with

φin(t, x) = lim
t→−∞ φ(t, x).

On the other hand, when taking the advanced Robin Green function, given by

Gadv
R (ω, 0, x) = β

1 + iβω
e−iωx, (18)

�0(ω, x) corresponds to the output field �out(ω, x) (φout(t, x) = limt→∞ φ(t, x)). By
combining these two possibilities, we find the relation between the output and input fields:

�out(ω, x)=�in(ω, x) +
[
Gret

R (ω, 0, x) − Gadv
R (ω, 0, x)

] [
∂

∂x
δ�(ω, 0) − δ�(ω, 0)

β

]
. (19)

The final result is obtained by inserting equations (16) (with �0 replaced by �in since we
neglect terms of second order), (17) and (18) into the rhs of equation (19). Further physical
insight is gained if we write the input–output relation in terms of the annihilation operators
ain, aout and their Hermitian conjugates, by combining equations (11) and (19). The resulting
input–output relation has the form of a Bogoliubov transformation:

aout(ω) = ain(ω) +
2i

√
ω√

1 + β2ω2

∫
dω′

2π

1 + β2ωω′√
1 + β2ω′2

√
|ω′|

× [θ(ω′)ain(ω
′) − θ(−ω′)ain(−ω′)†]δQ(ω − ω′). (20)

Since the output annihilation operator is contaminated by the input creation operator, the
input vacuum state |0in〉 is not a vacuum state with respect to the output operators. In the next
section, we compute the resulting particle creation effect.

3. Frequency spectrum

The number of particles created with frequencies between ω and ω + dω (ω � 0) is

dN

dω
(ω) dω = 〈0in|aout(ω)†aout(ω)|0in〉dω

2π
. (21)

The spectrum is obtained by inserting equation (20) into (21):

dN

dω
(ω) = 2ω

π(1 + β2ω2)

∫ ∞

0

dω′

2π

ω′[1 − β2ωω′]2

1 + β2ω′2 |δQ(ω + ω′)|2. (22)

To single out the effect of a given Fourier component of the motion, we take

δq(t) = δq0 cos(ω0t) e−|t |/T ,

with ω0T 
 1. In this case, δQ(ω) corresponds to two very narrow peaks around ω = ±ω0,

so that we may take the approximation

|δQ(ω)|2 ≈ π

2
δq2

0T [δ(ω − ω0) + δ(ω + ω0)] . (23)
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Figure 3. Spectral distribution of the emitted particles dN/dω. For the horizontal scale, we divide
the frequencies by the mechanical frequency ω0. Dashed line: β = 0 (Dirichlet case), solid line:
βω0 = 1.7, dotted line βω0 = 5.

Inserting this equation into (22), we find

dN

dω
(ω) = δq2

0T

2π
ω(ω0 − ω)

[1 − β2ω(ω0 − ω)]2

(1 + β2ω2)[1 + β2(ω0 − ω)2]
(ω0 − ω). (24)

Note that the spectrum vanishes for ω > ω0: no particle is created with frequency larger than
the mechanical frequency. Field modes at higher frequencies are not excited by the motion,
which is slow in the time scale corresponding to such frequencies (quasi-static regime). This
important property confirms the consistency of our perturbation approach, with its expansion
in δq/λ.

A second important general property of the spectrum given by equation (24) is the
symmetry around ω = ω0/2: the spectrum is invariant under the replacement ω → ω0 − ω.

This is a signature that the particles are created in pairs, with frequencies such that their sum
equals ω0. Hence, for each particle created at frequency ω, there is a ‘twin’ particle created at
frequency ω0 − ω.

Since Robin BC interpolate Dirichlet and Neumann ones, we may derive the spectra for
these two cases by taking appropriate limits of equation (24). For Dirichlet BC, we find

dN(D)

dω
(ω)

∣∣∣∣
(D)

= lim
β→0

dN

dω
(ω) = (δq0)

2T

2π
ω(ω0 − ω)(ω0 − ω), (25)

in agreement with [6]. For the Neumann BC (β → ∞), we find the same spectrum, confirming
the equivalence between Dirichlet and Neumann in the context of the dynamical Casimir effect
in 1+1 dimensions [20].

For intermediate values of β, the spectrum is always smaller than in the Dirichlet case
for all values of ω. In fact, we may write the result of equation (24) as

dN

dω
(ω) = η

dN(D)

dω
(ω), (26)

where the reduction factor η � 1 is a function of βω0 and ω/ω0. The reduction may be more
severe near ω = ω0/2, which is the spectrum maximum in the Dirichlet case, for some values
of βω0. Hence, the Robin spectrum may develop global maxima near ω = 0 and ω = ω0,

as in the example shown in figure 3 (solid line), with βω0 = 1.7. In this figure, we also plot
the Dirichlet/Neumann spectrum (dashed line) and the Robin spectrum for βω0 = 5 (dotted
line). As discussed above, all curves are symmetric with respect to ω = ω0/2.
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Figure 4. Total particle creation rate as a function of mechanical frequency (in units of 1/β).
Inset: ratio between creation rates for Robin and Dirichlet BC.

The areas below the curves shown in figure 3 correspond to the total number of created
particles. The figure already indicates that this number, to be discussed in the next section,
may be considerably reduced (with respect to the Dirichlet case) for intermediate values of β.

4. Particle creation rate

The total number of created particles is given by

N =
∫ ω0

0

dN

dω
(ω) dω = δq2

0T

2π
ω3

0F(βω0), (27)

with

F(ξ) = ξ [4ξ + ξ 3 + 12 arctan(ξ)] − 6(2 + ξ 2) ln(1 + ξ 2)

6ξ 2(4 + ξ 2)
. (28)

As expected for an open geometry (with a continuum of field modes), N is proportional to
time T , so that the particle creation rate R ≡ N/T is the physically meaningful quantity. For
the Dirichlet case, we take F(ξ → 0) = 1/6, and then

R(D) = δq2
0ω3

0

12π
. (29)

For the Neumann case, we find the same result for the creation rate, since the spectrum is
the same. Note that the rate increases with ω0 according to equation (29) and vanishes (as
required) in the static limit ω0 = 0. This could have been anticipated since the particle creation
is an effect of changing the BC nonadiabatically. However, for Robin BC the rate is not a
monotonic function of ω0. In figure 4, we plot the rate R as a function of βω0 (for a fixed β).
R decreases as ω0 varies from 1.3/β to the local minimum at 2.1/β.

In the inset of figure 4, we plot the ratio R/R(D) = 6F(βω0) � 1 as a function of
βω0. This ratio represents the reduction of the Dirichlet creation rate for a finite β. It only
depends on the dimensionless variable βω0 and goes asymptotically to one for βω0 
 1,

since the Neumann BC yields the same rate as the Dirichlet case. The reduction is maximum
at βω0 = 2.2. At this point, the creation rate is reduced to 1.3% of the Dirichlet value1.

1 When plotting the creation rate itself, the effect seems to be less impressive because the Dirichlet rate increases
with ω0.
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Since the relevant field frequencies are bounded by the inequality ω � ω0, these results
may be interpreted with the help of figure 1, which shows the variation of the phase ϕ acquired
in the reflection by the Robin boundary as a function of ω. When ω0 � 1/β, all the relevant
field modes are reflected as in the Dirichlet case (ϕ ≈ −π) and the creation rate is close to the
Dirichlet value, as expected. As ω0 approaches 1/β, most field modes probe the non-trivial
sector shown in figure 1, with phase factors very different from −π . This mimics the phase
resulting from penetration in metals with finite conductivity, as for instance in the theoretical
framework of the plasma model described in the introduction. Hence, it is not surprising
that the dynamical Casimir effect is reduced, a result which is analogous to the reduction
of the static Casimir effect when finite conductivity is considered. In particular, when ω0 is
close to 2/β, the centre of the spectrum (see figure 1) is close to ω = 1/β, where the phase
has a maximum deviation from the Dirichlet/Neumann values. This explains the stronger
reduction near the centre of the spectrum shown by the solid line in figure 3. For instance, for
βω0 = 2, dN/dω = 0 at ω = ω0/2 = 1/β.

On the other hand, when ω0 
 1/β, the non-trivial sector of the spectrum is a tiny
fraction of the relevant range 0 � ω � ω0. As a consequence, most frequencies are reflected
as in the Neumann case (ϕ = 0) and the creation rate approaches the common value for
Dirichlet/Neumann BC.

We may also calculate the radiated energy from these results. Thanks to the symmetry of
the spectrum around ω = ω0/2, we have

E =
∫ ω0

0

dN

dω
(ω)h̄ω dω = h̄ω0

2
N. (30)

Combining with equation (27), we find

E = δq2
0T h̄ω4

0F(βω0)/(4π). (31)

This expression can be directly compared with the result for the Casimir force we have
recently reported [15]. The force is written (in the Fourier domain) as F(ω) = χ(ω)δQ(ω)

and its work on the slab is given in terms of the imaginary part of the susceptibility function
χ(ω):

W = − 1

π

∫ ∞

0
dω ω Im χ(ω)|δQ(ω)|2. (32)

For the quasi-sinusoidal motion considered here, we find, using equation (23),

W = −δq2
0T ω0 Im χ(ω0)/2. (33)

The result for Im χ(ω0) derived in [15] can be cast in the form2 Imχ(ω0) = h̄ω3
0F(βω0)/(2π).

Then, the comparison of equations (31) and (33) yield E = −W, so that the total radiated
energy coincides with the negative of the work done on the slab by the Casimir force, as
expected from energy conservation.

5. Conclusion

Dirichlet (β → 0) and Neumann BC (β → ∞) yield the same result for the spectrum of
the created particles. With the Robin BC, we are able to interpolate continuously between

2 In [15], a narrow plate is considered, rather than a slab. The two sides of the plate provide identical (and independent)
contributions to the force, because Robin BC do not allow for any coupling between the fields in each side. In fact,
the two sides correspond to independent field operators and Hilbert spaces. To compare with the present situation,
we divide the result of [15] by 2.
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these two cases. For intermediate values of β, the spectrum is always smaller than the
Dirichlet/Neumann case, for all values of frequency.

In the range 1.2 < βω0 < 2.4 the spectrum develops lateral peaks higher than the value at
ω = ω0/2. This is also approximately the range in which the total creation rate (surprisingly)
decreases with ω0. This rate is reduced by up to 1.3% of the Dirichlet/Neumann value, if the
mechanical frequency is selected at ω0 = 2.2/β. In other words, the coupling with the vacuum
field state is considerably reduced if the slab oscillates at a frequency close to this value.

When considering the electromagnetic field and a plane mirror moving along its normal
direction, the BC in the ideal case of perfect reflectors may be decomposed into Dirichlet
and Neumann BC for each orthogonal polarization [21]. In 3+1 dimensions, the effect with
Neumann BC is considerably larger than with Dirichlet BC and it would be interesting to
investigate the continuous transition between these two limiting cases.

Reflection by real metallic plates involves non-trivial frequency-dependent phase factors
as in the case of Robin BC. The results of the present paper indicate that finite conductivity
might yield a reduction of the magnitude of the dynamical Casimir effect.
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